

DPP - 2 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

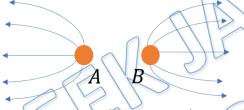
https://youtu.be/RcbQkfq_gdY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/40

Q 1. Unit of electric field intensity is:

(Where N = Newton, and C = Coulomb)


(a) *NC*

(b) N/C

(c) NC^2

(d) N/C^2

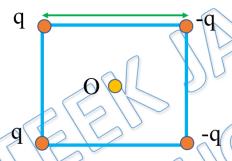
Q 2. Fig. shows electric lines of force due to point charges q_1 and q_2 placed at points A and B respectively. Write the nature of charge on them:

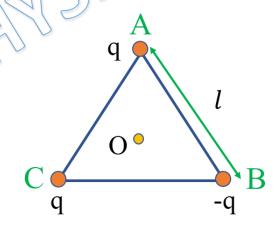
- (a) q_1 =positive, q_2 = negative
- (b) q_1 = negative, q_2 = positive
- (c) both are positive
- (d) both are negative
- Q 3. A test charge +5C experiences a net force of 20 N due to electric field at a point A in an electric field region. What is the net electric field intensity at point A?
 - (a) 5 N/C

(b) 4 N/C

(c) $5N/C^2$

- (d) cannot be determined
- Q 4. Which among the following statements is true with regard to electric field lines?
 - (a) Electric field lines always intersect
 - (b) Electric field lines may or may not intersect
 - (c) Electric field lines can be seen
 - (d) Electric field lines never intersect
- Q 5. The conventional direction of electric field is:
 - (a) Positive charge to negative charge
 - (b) Negative charge to positive charge
 - (c) No specific direction
 - (d) Direction cannot be determined
- Q 6. Calculate the electric field intensity at the centre 'O' of square?


<u>hysicsaholics</u>



- (a) $\frac{kq}{d^2}$
- (c) zero

- (b) $\frac{2kq}{d^2}$ (d) None of these
- Calculate the electric field intensity at the centre 'O' of square? Q 7.

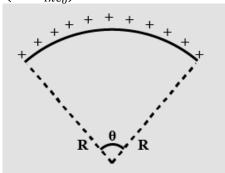
- $(b) \frac{2\sqrt{2}kq}{d^2}$
- (d) None of these
- Calculate the magnitude of electric field intensity at the centroid of equilateral triangle, and its direction? Q 8.

- (a) $\frac{3kq}{l^2}$ towards A (c) $\frac{2kq}{l^2}$ towards B

- (b) $\frac{6kq}{l^2}$ towards B
- (d) None of these

hysicsaho<u>lics</u>

Q9. The maximum electric field intensity on the axis of a uniformly charged ring of charge Q and radius R will be?

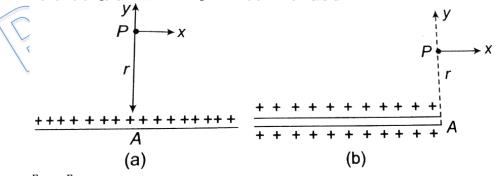

(a)
$$\frac{1}{4\pi\varepsilon_0} \frac{Q}{(3\sqrt{3}R^2)}$$
(c)
$$\frac{1}{4\pi\varepsilon_0} \frac{2Q}{(3\sqrt{3}R^2)}$$

(b)
$$\frac{1}{4\pi\varepsilon_0} \frac{2Q}{(3R^2)}$$

$$(c) \frac{1}{4\pi\varepsilon_0} \frac{2Q}{(3\sqrt{3}R^2)}$$

(b)
$$\frac{1}{4\pi\varepsilon_0} \frac{2Q}{(3R^2)}$$
(d)
$$\frac{1}{4\pi\varepsilon_0} \frac{3Q}{(2\sqrt{2}R^2)}$$

Q 10. A charge '+Q' is uniformly distributed along the circular arc of radius 'R' as shown in the figure. The magnitude of the force experienced by the point charge +q placed at the centre of curvature is $\left(k = \frac{1}{4\pi\varepsilon_0}\right)$


(a)
$$\frac{kQq\sin\left(\frac{\theta}{2}\right)}{(R^2\theta)}$$

(b)
$$\frac{2kQq\sin\left(\frac{\theta}{2}\right)}{(R^2\theta)}$$

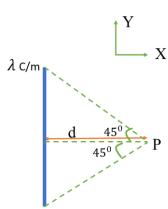
(c)
$$\frac{3kQq\sin\left(\frac{\theta}{2}\right)}{(R^2\theta)}$$

(d)
$$\frac{2kQq\sin\left(\frac{\theta}{2}\right)}{(R\theta)}$$

Q 11. Electric field, due to an infinite line of change, as shown in figure at a point P at a distance r from the line is E. If wire is folded at point A, so that both parts lie alongside as shown in figure(b), then express electric field at P in vector form:

(a) $\frac{E}{2}\hat{i} + \frac{E}{2}\hat{j}$

(b) $E\hat{\imath} + E\hat{\jmath}$

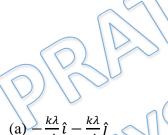

(c) $\sqrt{2}E\hat{\imath} + \sqrt{2}E\hat{\jmath}$

- $(d)\frac{E}{\sqrt{2}}\hat{\imath} + \frac{E}{\sqrt{2}}\hat{\jmath}$
- Q 12. Linear charge density of finite charged wire is $+\lambda C/m$ (where λ is a positive constant). Find electric field intensity at point 'P': $\left(k = \frac{1}{4\pi\varepsilon_0}\right)$

<u>hysicsaholics</u>

(a)
$$\frac{\sqrt{2}k\lambda}{d}\hat{i}$$
(c) $\frac{\sqrt{2}k\lambda}{2}\hat{i}$ $k\lambda$

(b)
$$\frac{\sqrt{2}k\lambda}{d}\hat{\imath} - \frac{\sqrt{2}k\lambda}{d}\hat{\jmath}$$


(c)
$$\frac{\sqrt{2}k\lambda}{d}\hat{i} - \frac{k\lambda}{d}\hat{j}$$

(d)
$$\frac{\sqrt{2}k\lambda}{d}\hat{\imath} + \frac{\sqrt{2}k\lambda}{d}\hat{\jmath}$$

(a) $\frac{\sqrt{2}k\lambda}{d}\hat{i}$ (b) $\frac{\sqrt{2}k\lambda}{d}\hat{i} - \frac{\sqrt{2}k\lambda}{d}\hat{j}$ (c) $\frac{\sqrt{2}k\lambda}{d}\hat{i} - \frac{k\lambda}{d}\hat{j}$ (d) $\frac{\sqrt{2}k\lambda}{d}\hat{i} + \frac{\sqrt{2}k\lambda}{d}\hat{j}$ Q 13. Linear charge density of finite charged wire is $-\lambda C/m$ (where λ is positive constant). Find electric field intensity at point 'P':

(a)
$$-\frac{k\lambda}{d}\hat{i} - \frac{k\lambda}{d}\hat{j}$$

(b)
$$\frac{k\lambda}{d}\hat{i} - \frac{k\lambda}{d}\hat{j}$$

$$(c) \frac{k\lambda}{d} \hat{i} + \frac{k\lambda}{d} \hat{j}$$

(b)
$$\frac{k\lambda}{d}\hat{\imath} - \frac{k\lambda}{d}\hat{\jmath}$$

(d) $-\frac{k\lambda}{d}\hat{\imath} + \frac{k\lambda}{d}\hat{\jmath}$

Answer Key

Q.1 b	Q.2 c	Q.3 b	Q.4 d	Q.5 a
Q.6 c	Q.7 c	Q.8 b	Q.9 с	Q.10 b
Q.11 b	Q.12 a	Q.13 d		

PRATIES AND LICS